
G Code Overview
Table of Contents
JavaScript must be enabled in your browser to display the
table of contents.

1. Overview
The LinuxCNC G Code language is based on the RS274/NGC
language. The G Code language is based on lines of code. Each line
(also called a block) may include commands to do several different
things. Lines of code may be collected in a file to make a program.
A typical line of code consists of an optional line number at the
beginning followed by one or more words. A word consists of a
letter followed by a number (or something that evaluates to a
number). A word may either give a command or provide an
argument to a command. For example, G1 X3 is a valid line of code
with two words. G1 is a command meaning move in a straight line
at the programmed feed rate to the programmed end point, and X3
provides an argument value (the value of X should be 3 at the end
of the move). Most LinuxCNC G Code commands start with either G
or M (for General and Miscellaneous). The words for these
commands are called G codes and M codes.
The LinuxCNC language has no indicator for the start of a
program. The Interpreter, however, deals with files. A single
program may be in a single file, or a program may be spread
across several files. A file may demarcated with percents in the
following way. The first non-blank line of a file may contain
nothing but a percent sign, %, possibly surrounded by white space,
and later in the file (normally at the end of the file) there may be a
similar line. Demarcating a file with percents is optional if the file
has an M2 or M30 in it, but is required if not. An error will be
signaled if a file has a percent line at the beginning but not at the
end. The useful contents of a file demarcated by percents stop after
the second percent line. Anything after that is ignored.

2.1. Block Delete

2.2. Line Number

The LinuxCNC G Code language has two commands (M2 or M30),
either of which ends a program. A program may end before the
end of a file. Lines of a file that occur after the end of a program
are not to be executed. The interpreter does not even read them.

2. Format of a line
A permissible line of input code consists of the following, in order,
with the restriction that there is a maximum (currently 256) to the
number of characters allowed on a line.

1. an optional block delete character, which is a slash /.
2. an optional line number.
3. any number of words, parameter settings, and comments.
4. an end of line marker (carriage return or line feed or both).

Any input not explicitly allowed is illegal and will cause the
Interpreter to signal an error.
Spaces and tabs are allowed anywhere on a line of code and do not
change the meaning of the line, except inside comments. This
makes some strange-looking input legal. The line G0X +0. 12 34Y 7
is equivalent to G0 x+0.1234 Y7, for example.
Blank lines are allowed in the input. They are to be ignored.
Input is case insensitive, except in comments, i.e., any letter
outside a comment may be in upper or lower case without
changing the meaning of a line.

The optional block delete character the slash / when placed first on
a line can be used by some user interfaces to skip lines of code
when needed. In Axis the key combination Alt-m-/ toggles block
delete on and off. When block delete is on any lines starting with
the slash / are skipped.

2.3. Word

A line number is the letter N followed by an unsigned integer,
optionally followed by a period and another unsigned integer. For
example, N1234 and N56.78 are valid line numbers. They may be
repeated or used out of order, although normal practice is to avoid
such usage. Line numbers may also be skipped, and that is normal
practice. A line number is not required to be used, but must be in
the proper place if used.

A word is a letter other than N followed by a real value.
Words may begin with any of the letters shown in the following
Table. The table includes N for completeness, even though, as
defined above, line numbers are not words. Several letters (I, J, K,
L, P, R) may have different meanings in different contexts. Letters
which refer to axis names are not valid on a machine which does
not have the corresponding axis.

Table 1. Words and their meanings

Letter Meaning
A A axis of machine

B B axis of machine

C C axis of machine

D Tool radius compensation number

F Feed rate

G General function (See table Modal
Groups)

H Tool length offset index

I X offset for arcs and G87 canned cycles

J Y offset for arcs and G87 canned cycles

K Z offset for arcs and G87 canned cycles.

2.4. Number

Letter Meaning
Spindle-Motion Ratio for G33
synchronized movements.

L generic parameter word for G10, M66
and others

M Miscellaneous function (See table Modal
Groups)

N Line number

P Dwell time in canned cycles and with G4.

Key used with G10.

Q Feed increment in G73, G83 canned
cycles

R Arc radius or canned cycle plane

S Spindle speed

T Tool selection

U U axis of machine

V V axis of machine

W W axis of machine

X X axis of machine

Y Y axis of machine

Z Z axis of machine

The following rules are used for (explicit) numbers. In these rules a
digit is a single character between 0 and 9.

A number consists of (1) an optional plus or minus sign,
followed by (2) zero to many digits, followed, possibly, by (3)
one decimal point, followed by (4) zero to many digits -
provided that there is at least one digit somewhere in the
number.
There are two kinds of numbers: integers and decimals. An
integer does not have a decimal point in it; a decimal does.
Numbers may have any number of digits, subject to the
limitation on line length. Only about seventeen significant
figures will be retained, however (enough for all known
applications).
A non-zero number with no sign as the first character is
assumed to be positive.

Notice that initial (before the decimal point and the first non-zero
digit) and trailing (after the decimal point and the last non-zero
digit) zeros are allowed but not required. A number written with
initial or trailing zeros will have the same value when it is read as
if the extra zeros were not there.
Numbers used for specific purposes in RS274/NGC are often
restricted to some finite set of values or some to some range of
values. In many uses, decimal numbers must be close to integers;
this includes the values of indices (for parameters and carousel
slot numbers, for example), M codes, and G codes multiplied by
ten. A decimal number which is intended to represent an integer is
considered close enough if it is within 0.0001 of an integer value.

3. Parameters
The RS274/NGC language supports parameters - what in other
programming languages would be called variables. There are
several types of parameter of different purpose and appearance,
each described in the following sections. The only value type
supported by parameters is floating-point; there are no string,
boolean or integer types in G-code like in other programming
languages. However, logic expressions can be formulated with
boolean operators (AND, OR, XOR, and the comparison operators

EQ,NE,GT,GE,LT,LE), and the MOD, ROUND, FUP and FIX operators
support integer arithmetic.
Parameters differ in syntax, scope, behavior when not yet
initialized, mode, persistence and intended use.

Syntax
There are three kinds of syntactic appearance:

numbered - #4711
named local - #<localvalue>
named global - #<_globalvalue>

Scope
The scope of a parameter is either global, or local within a
subroutine. Subroutine parameters and local named variables
have local scope. Global named parameters and numbered
parameters starting from number 31 are global in scope.
RS274/NGC uses lexical scoping - in a subroutine only the local
variables defined therein, and any global variables are visible.
The local variables of a calling procedure are not visible in a
called procedure.

Behavior of uninitialized parameters
Uninitialized global parameters, and unused subroutine
parameters return the value zero when used in an
expression.
Uninitialized named parameters signal an error when
used in an expression.

Mode
Most parameters are read/write and may be assigned to within
an assignment statement. However, for many predefined
parameters this does not make sense, so they are are read-only
- they may appear in expressions, but not on the left-hand side
of an assignment statement.

Persistence
When LinuxCNC is shut down, volatile parameters lose their
values. All parameters except numbered parameters in the
current persistent range
[The range of persistent parameters may change as development progresses.

3.1. Numbered Parameters

This range is currently 5161- 5390. It is defined in the _required_parameters

array in file the src/emc/rs274ngc/interp_array.cc .]

are volatile. Persistent parameters are saved in the .var file
and restored to their previous values when LinuxCNC is
started again. Volatile numbered parameters are reset to zero.

Intended Use
user parameters:: numbered parameters in the range
31..5000, and named global and local parameters except
predefined parameters. These are available for general-
purpose storage of floating-point values, like intermediate
results, flags etc, throughout program execution. They are
read/write (can be assigned a value).
subroutine parameters - these are used to hold the actual
parameters passed to a subroutine.
numbered parameters - most of these are used to access
offsets of coordinate systems.
system parameters - used to determine the current
running version. They are read-only.

A numbered parameter is the pound character # followed by an
integer between 1 and (currently) 5602
[The RS274/NGC interpreter maintains an array of numbered parameters. Its size is

defined by the symbol RS274NGC_MAX_PARAMETERS in the file

src/emc/rs274ngc/interp_internal.hh). This number of numerical parameters may

also increase as development adds support for new parameters.]

. The parameter is referred to by this integer, and its value is
whatever number is stored in the parameter.
A value is stored in a parameter with the = operator; for example:

#3 = 15 (set parameter 3 to 15)

A parameter setting does not take effect until after all parameter
values on the same line have been found. For example, if
parameter 3 has been previously set to 15 and the line #3=6 G1 X#3

is interpreted, a straight move to a point where X equals 15 will
occur and the value of parameter 3 will be 6.
The # character takes precedence over other operations, so that,
for example, #1+2 means the number found by adding 2 to the
value of parameter 1, not the value found in parameter 3. Of
course, #[1+2] does mean the value found in parameter 3. The #
character may be repeated; for example ##2 means the value of
the parameter whose index is the (integer) value of parameter 2.

31-5000 - G code user parameters. These parameters are global
in the G code file, and available for general use. Volatile.
5061-5069 - Coordinates of a G38 probe result (X, Y, Z, A, B, C, U,
V & W). Coordinates are in the coordinate system in which the
G38 took place. Volatile.
5070 - G38 probe result: 1 if success, 0 if probe failed to close.
Used with G38.3 and G38.5. Volatile.
5161-5169 - "G28" Home for X, Y, Z, A, B, C, U, V & W. Persistent.
5181-5189 - "G30" Home for X, Y, Z, A, B, C, U, V & W. Persistent.
5210 - 1 if "G52" or "G92" offset is currently applied, 0
otherwise. Volatile by default; persistent if
DISABLE_G92_PERSISTENCE = 1 in the [RS274NGC] section of
the .ini file.
5211-5219 - Shared "G52" and "G92" offset for X, Y, Z, A, B, C, U,
V & W. Volatile by default; persistent if
DISABLE_G92_PERSISTENCE = 1 in the [RS274NGC] section of
the .ini file.
5220 - Coordinate System number 1 - 9 for G54 - G59.3.
Persistent.
5221-5230 - Coordinate System 1, G54 for X, Y, Z, A, B, C, U, V, W
& R. R denotes the XY rotation angle around the Z axis.
Persistent.
5241-5250 - Coordinate System 2, G55 for X, Y, Z, A, B, C, U, V, W
& R. Persistent.
5261-5270 - Coordinate System 3, G56 for X, Y, Z, A, B, C, U, V, W
& R. Persistent.
5281-5290 - Coordinate System 4, G57 for X, Y, Z, A, B, C, U, V, W
& R. Persistent.

http://linuxcnc.org/docs/html/gcode/g-code.html#gcode:g38
http://linuxcnc.org/docs/html/gcode/g-code.html#gcode:g38

5301-5310 - Coordinate System 5, G58 for X, Y, Z, A, B, C, U, V, W
& R. Persistent.
5321-5330 - Coordinate System 6, G59 for X, Y, Z, A, B, C, U, V, W
& R. Persistent.
5341-5350 - Coordinate System 7, G59.1 for X, Y, Z, A, B, C, U, V,
W & R. Persistent.
5361-5370 - Coordinate System 8, G59.2 for X, Y, Z, A, B, C, U, V,
W & R. Persistent.
5381-5390 - Coordinate System 9, G59.3 for X, Y, Z, A, B, C, U, V,
W & R. Persistent.
5399 - Result of M66 - Check or wait for input. Volatile.
5400 - Tool Number. Volatile.
5401-5409 - Tool Offsets for X, Y, Z, A, B, C, U, V & W. Volatile.
5410 - Tool Diameter. Volatile.
5411 - Tool Front Angle. Volatile.
5412 - Tool Back Angle. Volatile.
5413 - Tool Orientation. Volatile.
5420-5428 - Current relative position in the active coordinate
system including all offsets and in the current program units
for X, Y, Z, A, B, C, U, V & W, volatile.
5599 - Flag for controlling the output of (DEBUG,) statements.
1=output, 0=no output; default=1. Volatile.
5600 - Toolchanger fault indicator. Used with the iocontrol-v2
component. 1: toolchanger faulted, 0: normal. Volatile.
5601 - Toolchanger fault code. Used with the iocontrol-v2
component. Reflects the value of the toolchanger-reason HAL
pin if a fault occurred. Volatile.

Numbered Parameters Persistence
The values of parameters in the persistent range are retained over
time, even if the machining center is powered down. LinuxCNC
uses a parameter file to ensure persistence. It is managed by the
Interpreter. The Interpreter reads the file when it starts up, and
writes the file when it exits.

3.2. Subroutine Parameters

3.3. Named Parameters

The format of a parameter file is shown in Table Parameter File
Format.
The Interpreter expects the file to have two columns. It skips any
lines which do not contain exactly two numeric values. The first
column is expected to contain an integer value (the parameter’s
number). The second column contains a floating point number
(this parameter’s last value). The value is represented as a double-
precision floating point number inside the Interpreter, but a
decimal point is not required in the file.
Parameters in the user-defined range (31-5000) may be added to
this file. Such parameters will be read by the Interpreter and
written to the file as it exits.
Missing Parameters in the persistent range will be initialized to
zero and written with their current values on the next save
operation.
The parameter numbers must be arranged in ascending order. An
Parameter file out of order error will be signaled if they are not in
ascending order.
The original file is saved as a backup file when the new file is
written.

Table 2. Parameter File Format

Parameter Number Parameter Value
5161 0.0

5162 0.0

1-30 Subroutine local parameters of call arguments. These
parameters are local to the subroutine. Volatile. See also the
chapter on O-Codes.

http://linuxcnc.org/docs/html/gcode/o-code.html#cha:o-codes

Named parameters work like numbered parameters but are easier
to read. All parameter names are converted to lower case and have
spaces and tabs removed, so <param> and <P a R am > refer to the
same parameter. Named parameters must be enclosed with < >
marks.
#<named parameter> is a local named parameter. By default, a
named parameter is local to the scope in which it is assigned. You
can’t access a local parameter outside of its subroutine. This means
that two subroutines can use the same parameter names without
fear of one subroutine overwriting the values in another.
#<_global named parameter> is a global named parameter. They
are accessible from within called subroutines and may set values
within subroutines that are accessible to the caller. As far as scope
is concerned, they act just like regular numeric parameters. They
are not stored in files.
Examples:

Declaration of named global variable

#<_endmill_dia> = 0.049

Reference to previously declared global variable

#<_endmill_rad> = [#<_endmill_dia>/2.0]

Mixed literal and named parameters

o100 call [0.0] [0.0] [#<_inside_cutout>-#
<_endmill_dia>] [#<_Zcut>] [#<_feedrate>]

Named parameters spring into existence when they are assigned a
value for the first time. Local named parameters vanish when
their scope is left: when a subroutine returns, all its local
parameters are deleted and cannot be referred to anymore.
It is an error to use a non-existent named parameter within an
expression, or at the right-hand side of an assignment. Printing the

3.4. Predefined Named Parameters

value of a non-existent named parameter with a DEBUG statement
- like (DEBUG, <no_such_parameter>) will display the string #.
Global parameters, as well as local parameters assigned to at the
global level, retain their value once assigned even when the
program ends, and have these values when the program is run
again.
The EXISTS function tests whether a given named parameter
exists.

The following global read only named parameters are available to
access internal state of the interpreter and machine state. They can
be used in arbitrary expressions, for instance to control flow of the
program with if-then-else statements. Note that new predefined
named parameters can be added easily without changes to the
source code.

#<_vmajor> - Major package version. If current version was
2.5.2 would return 2.5.
#<_vminor> - Minor package version. If current version was
2.6.2 it would return 0.2.
#<_line> - Sequence number. If running a G-Code file, this
returns the current line number.
#<_motion_mode> - Return the interpreter’s current motion
mode:

Motion
mode

return
value

G1 10

G2 20

G3 30

G33 330

G38.2 382

G38.3 383

http://linuxcnc.org/docs/html/remap/remap.html#remap:adding-predefined-named-parameters

Motion
mode

return
value

G38.4 384

G38.5 385

G5.2 52

G73 730

G76 760

G80 800

G81 810

G82 820

G83 830

G84 840

G85 850

G86 860

G87 870

G88 880

G89 890

#<_plane> - returns the value designating the current plane:

Plane return
value

G17 170

G18 180

G19 190

G17.1 171

Plane return
value

G18.1 181

G19.1 191

#<_ccomp> - Status of cutter compensation. Return values:

Mode return
value

G40 400

G41 410

G41.1 411

G41 410

G42 420

G42.1 421

#<_metric> - Return 1 if G21 is on, else 0.
#<_imperial> - Return 1 if G20 is on, else 0.
#<_absolute> - Return 1 if G90 is on, else 0.
#<_incremental> - Return 1 if G91 is on, else 0.
#<_inverse_time> - Return 1 if inverse feed mode (G93) is on,
else 0.
#<_units_per_minute> - Return 1 if Units/minute feed mode
(G94) is on, else 0.
#<_units_per_rev> - Return 1 if Units/revolution mode (G95) is
on, else 0.
#<_coord_system> - Return a float of the current coordinate
system name(G54..G59.3). For example if your in G55
coordinate system the return value is 550.000000 and if your in
G59.1 the return value is 591.000000.

3.5. System Parameters

Mode return
value

Mode return
value

G54 540

G55 550

G56 560

G57 570

G58 580

G59 590

G59.1 591

G59.2 592

G59.3 593

#<_tool_offset> - Return 1 if tool offset (G43) is on, else 0.
#<_retract_r_plane> - Return 1 if G98 is set, else 0.
#<_retract_old_z> - Return 1 if G99 is on, else 0.

#<_spindle_rpm_mode> - Return 1 if spindle rpm mode (G97) is
on, else 0.
#<_spindle_css_mode> - Return 1 if constant surface speed
mode (G96) is on, else 0.
#<_ijk_absolute_mode> - Return 1 if Absolute Arc distance
mode (G90.1) is on, else 0.
#<_lathe_diameter_mode> - Return 1 if this is a lathe
configuration and diameter (G7) mode is on, else 0.
#<_lathe_radius_mode> - Return 1 if this is a lathe configuration
and radius (G8) mode is on, else 0.
#<_spindle_on> - Return 1 if spindle currently running (M3 or
M4) else 0.

#<_spindle_cw> - Return 1 if spindle direction is clockwise (M3)
else 0.
#<_mist> - Return 1 if mist (M7) is on.
#<_flood> - Return 1 if flood (M8) is on.
#<_speed_override> - Return 1 if feed override (M48 or M50 P1)
is on, else 0.
#<_feed_override> - Return 1 if feed override (M48 or M51 P1) is
on, else 0.
#<_adaptive_feed> - Return 1 if adaptive feed (M52 or M52 P1)
is on, else 0.
#<_feed_hold> - Return 1 if feed hold switch is enabled (M53
P1), else 0.
#<_feed> - Return the current value of F, not the actual feed
rate.
#<_rpm> - Return the current value of S, not the actual spindle
speed.
#<_x> - Return current relative X coordinate including all
offsets. Same as #5420.
#<_y> - Return current relative Y coordinate including all
offsets. Same as #5421.
#<_z> - Return current relative Z coordinate including all
offsets. Same as #5422.
#<_a> - Return current relative A coordinate including all
offsets. Same as #5423.
#<_b> - Return current relative B coordinate including all
offsets. Same as #5424.
#<_c> - Return current relative C coordinate including all
offsets. Same as #5425.
#<_u> - Return current relative U coordinate including all
offsets. Same as #5426.
#<_v> - Return current relative V coordinate including all
offsets. Same as #5427.
#<_w> - Return current relative W coordinate including all
offsets. Same as #5428.

#<_current_tool> - Return number of the current tool in
spindle. Same as #5400.
#<_current_pocket> - Return pocket number of the current tool.
#<_selected_tool> - Return number of the selected tool post a T
code. Default -1.
#<_selected_pocket> - Return number of the selected pocket
post a T code. Default -1 (no pocket selected).
#<_value> - Return value from the last O-word return or
endsub. Default value 0 if no expression after return or endsub.
Initialized to 0 on program start.
#<_value_returned> - 1.0 if the last O-word return or endsub
returned a value, 0 otherwise. Cleared by the next O-word call.
#<_task> - 1.0 if the executing interpreter instance is part of
milltask, 0.0 otherwise. Sometimes it is necessary to treat this
case specially to retain proper preview, for instance when
testing the success of a probe (G38.n) by inspecting #5070,
which will always fail in the preview interpreter (e.g. Axis).
#<_call_level> - current nesting level of O-word procedures. For
debugging.
#<_remap_level> - current level of the remap stack. Each remap
in a block adds one to the remap level. For debugging.

4. HAL pins and INI values
If enabled in the INI file G-code has access to the values of INI file
entries and HAL pins.

#<_ini[section]name> Returns the value of the corresponding
item in the INI file. For example, if the ini file looks like so:

[SETUP]
XPOS = 3.145
YPOS = 2.718

you may refer to the named parameters #<_ini[setup]xpos>
and #<_ini[setup]ypos> within G-code.

http://linuxcnc.org/docs/html/config/ini-config.html#gcode:ini-features

EXISTS can be used to test for presence of a given ini file variable:

o100 if [EXISTS[#<_ini[setup]xpos>]]
 (debug, [setup]xpos exists: #<_ini[setup]xpos>)
o100 else
 (debug, [setup]xpos does not exist)
o100 endif

The value is read from the inifile once, and cached in the
interpreter. These parameters are read-only - assigning a value
will cause a runtime error. The names are not case sensitive - they
are converted to uppercase before consulting the ini file.

#<_hal[Hal item]> Allows G-code programs to read the values
of HAL pins Variable access is read-only, the only way to set
HAL pins from G-code remains M62-M65, M67, M68 and
custom M100-M199 codes. Note that the value read will not
update in real-time, typically the value that was on the pin
when the G-code program was started will be returned. It is
possible to work round this by forcing a state synch. One way
to do this is with a dummy M66 command: M66E0L0

Example:

(debug, #<_hal[motion-controller.time]>)

Access of HAL items is read-only. Currently, only all-lowercase HAL
names can be accessed this way.
EXISTS can be used to test for the presence of a given HAL item:

o100 if [EXISTS[#<_hal[motion-controller.time]>]]
 (debug, [motion-controller.time] exists: #<_hal[motion-
controller.time]>)
o100 else
 (debug, [motion-controller.time] does not exist)
o100 endif

This feature was motivated by the desire for stronger coupling
between user interface components like GladeVCP and PyVCP to

act as parameter source for driving NGC file behavior. The
alternative - going through the M6x pins and wiring them - has a
limited, non-mnemonic namespace and is unnecessarily
cumbersome just as a UI/Interpreter communications mechanism.

5. Expressions
An expression is a set of characters starting with a left bracket [
and ending with a balancing right bracket] . In between the
brackets are numbers, parameter values, mathematical operations,
and other expressions. An expression is evaluated to produce a
number. The expressions on a line are evaluated when the line is
read, before anything on the line is executed. An example of an
expression is [1 + acos[0] - [#3 ** [4.0/2]]].

6. Binary Operators
Binary operators only appear inside expressions. There are four
basic mathematical operations: addition (+), subtraction (-),
multiplication (*), and division (/). There are three logical
operations: non-exclusive or (OR), exclusive or (XOR), and logical
and (AND). The eighth operation is the modulus operation (MOD).
The ninth operation is the power operation (**) of raising the
number on the left of the operation to the power on the right. The
relational operators are equality (EQ), inequality (NE), strictly
greater than (GT), greater than or equal to (GE), strictly less than
(LT), and less than or equal to (LE).
The binary operations are divided into several groups according to
their precedence. If operations in different precedence groups are
strung together (for example in the expression [2.0 / 3 * 1.5 - 5.5 /
11.0]), operations in a higher group are to be performed before
operations in a lower group. If an expression contains more than
one operation from the same group (such as the first / and * in the
example), the operation on the left is performed first. Thus, the
example is equivalent to: [[[2.0 / 3] * 1.5] - [5.5 / 11.0]] , which is
equivalent to to [1.0 - 0.5] , which is 0.5.
The logical operations and modulus are to be performed on any
real numbers, not just on integers. The number zero is equivalent

to logical false, and any non-zero number is equivalent to logical
true.

Table 3. Operator Precedence

Operators Precedence
** highest

* / MOD

+ -

EQ NE GT GE LT
LE

AND OR XOR lowest

7. Equality and floating-point values
The RS274/NGC language only supports floating-point values of
finite precision. Therefore, testing for equality or inequality of two
floating-point values is inherently problematic. The interpreter
solves this problem by considering values equal if their absolute
difference is less than 0.0001 (this value is defined as
TOLERANCE_EQUAL in src/emc/rs274ngc/interp_internal.hh).

8. Functions
The available functions are shown in following table. Arguments to
unary operations which take angle measures (COS, SIN, and TAN)
are in degrees. Values returned by unary operations which return
angle measures (ACOS, ASIN, and ATAN) are also in degrees.

Table 4. Functions

Function Name Function result
ATAN[arg]/[arg] Four quadrant inverse

tangent

Function Name Function result
ABS[arg] Absolute value

ACOS[arg] Inverse cosine

ASIN[arg] Inverse sine

COS[arg] Cosine

EXP[arg] e raised to the given
power

FIX[arg] Round down to integer

FUP[arg] Round up to integer

ROUND[arg] Round to nearest
integer

LN[arg] Base-e logarithm

SIN[arg] Sine

SQRT[arg] Square Root

TAN[arg] Tangent

EXISTS[arg] Check named
Parameter

The FIX function rounds towards the left (less positive or more
negative) on a number line, so that FIX[2.8] =2 and FIX[-2.8] = -3.
The FUP operation rounds towards the right (more positive or less
negative) on a number line; FUP[2.8] = 3 and FUP[-2.8] = -2.
The EXISTS function checks for the existence of a single named
parameter. It takes only one named parameter and returns 1 if it
exists and 0 if it does not exist. It is an error if you use a numbered
parameter or an expression. Here is an example for the usage of
the EXISTS function:

o<test> sub
o10 if [EXISTS[#<_global>]]

 (debug, _global exists and has the value #
<_global>)
o10 else
 (debug, _global does not exist)
o10 endif
o<test> endsub

o<test> call
#<_global> = 4711
o<test> call
m2

9. Repeated Items
A line may have any number of G words, but two G words from the
same modal group may not appear on the same line See the Modal
Groups Section for more information.
A line may have zero to four M words. Two M words from the
same modal group may not appear on the same line.
For all other legal letters, a line may have only one word beginning
with that letter.
If a parameter setting of the same parameter is repeated on a line,
#3=15 #3=6, for example, only the last setting will take effect. It is
silly, but not illegal, to set the same parameter twice on the same
line.
If more than one comment appears on a line, only the last one will
be used; each of the other comments will be read and its format
will be checked, but it will be ignored thereafter. It is expected that
putting more than one comment on a line will be very rare.

10. Item order
The three types of item whose order may vary on a line (as given at
the beginning of this section) are word, parameter setting, and
comment. Imagine that these three types of item are divided into
three groups by type.

The first group (the words) may be reordered in any way without
changing the meaning of the line.
If the second group (the parameter settings) is reordered, there
will be no change in the meaning of the line unless the same
parameter is set more than once. In this case, only the last setting
of the parameter will take effect. For example, after the line #3=15
#3=6 has been interpreted, the value of parameter 3 will be 6. If the
order is reversed to #3=6 #3=15 and the line is interpreted, the
value of parameter 3 will be 15.
If the third group (the comments) contains more than one
comment and is reordered, only the last comment will be used.
If each group is kept in order or reordered without changing the
meaning of the line, then the three groups may be interleaved in
any way without changing the meaning of the line. For example,
the line g40 g1 #3=15 (foo) #4=-7.0 has five items and means exactly
the same thing in any of the 120 possible orders (such as #4=-7.0 g1
#3=15 g40 (foo)) for the five items.

11. Commands and Machine Modes
Many commands cause the controller to change from one mode to
another, and the mode stays active until some other command
changes it implicitly or explicitly. Such commands are called
modal. For example, if coolant is turned on, it stays on until it is
explicitly turned off. The G codes for motion are also modal. If a G1
(straight move) command is given on one line, for example, it will
be executed again on the next line if one or more axis words is
available on the line, unless an explicit command is given on that
next line using the axis words or canceling motion.
Non-modal codes have effect only on the lines on which they occur.
For example, G4 (dwell) is non-modal.

12. Polar Coordinates
Polar Coordinates can be used to specify the XY coordinate of a
move. The @n is the distance and ^n is the angle. The advantage of
this is for things like bolt hole circles which can be done very

simply by moving to a point in the center of the circle, setting the
offset and then moving out to the first hole then run the drill cycle.
Polar Coordinates always are from the current XY zero position. To
shift the Polar Coordinates from machine zero use an offset or
select a coordinate system.
In Absolute Mode the distance and angle is from the XY zero
position and the angle starts with 0 on the X Positive axis and
increases in a CCW direction about the Z axis. The code G1 @1^90
is the same as G1 Y1.
In Relative Mode the distance and angle is also from the XY zero
position but it is cumulative. This can be confusing at first how this
works in incremental mode.
For example if you have the following program you might expect it
to be a square pattern.

F100 G1 @.5 ^90
G91 @.5 ^90
@.5 ^90
@.5 ^90
@.5 ^90
G90 G0 X0 Y0 M2

You can see from the following figure that the output is not what
you might expect. Because we added 0.5 to the distance each time
the distance from the XY zero position increased with each line.

Figure 1. Polar Spiral

The following code will produce our square pattern.

F100 G1 @.5 ^90
G91 ^90
^90
^90
^90
G90 G0 X0 Y0 M2

As you can see by only adding to the angle by 90 degrees each time
the end point distance is the same for each line.

Figure 2. Polar Square

It is an error if:
An incremental move is started at the origin
A mix of Polar and and X or Y words are used

13. Modal Groups
Modal commands are arranged in sets called modal groups, and
only one member of a modal group may be in force at any given
time. In general, a modal group contains commands for which it is
logically impossible for two members to be in effect at the same
time - like measure in inches vs. measure in millimeters. A
machining center may be in many modes at the same time, with
one mode from each modal group being in effect. The modal
groups are shown in the following Table.

Table 5. G-Code Modal Groups

Modal Group
Meaning

Member Words

Non-modal codes
(Group 0)

G4, G10 G28, G30, G52, G53,
G92, G92.1, G92.2, G92.3,

Modal Group
Meaning

Member Words

Motion (Group 1) G0, G1, G2, G3, G33, G38.n,
G73, G76, G80, G81

G82, G83, G84, G85, G86, G87,
G88, G89

Plane selection
(Group 2)

G17, G18, G19, G17.1, G18.1,
G19.1

Distance Mode
(Group 3)

G90, G91

Arc IJK Distance
Mode (Group 4)

G90.1, G91.1

Feed Rate Mode
(Group 5)

G93, G94, G95

Units (Group 6) G20, G21

Cutter Diameter
Compensation
(Group 7)

G40, G41, G42, G41.1, G42.1

Tool Length Offset
(Group 8)

G43, G43.1, G49

Canned Cycles
Return Mode
(Group 10)

G98, G99

Coordinate System
(Group 12)

G54, G55, G56, G57, G58, G59,
G59.1, G59.2, G59.3

Control Mode
(Group 13)

G61, G61.1, G64

Spindle Speed Mode
(Group 14)

G96, G97

Modal Group
Meaning

Member Words

Lathe Diameter
Mode (Group 15)

G7, G8

Table 6. M-Code Modal Groups

Modal Group
Meaning

Member Words

Stopping (Group 4) M0, M1, M2, M30, M60

Spindle (Group 7) M3, M4, M5

Coolant (Group 8) (M7 M8 can both be on), M9

Override Switches
(Group 9)

M48, M49

User Defined
(Group 10)

M100-M199

For several modal groups, when a machining center is ready to
accept commands, one member of the group must be in effect.
There are default settings for these modal groups. When the
machining center is turned on or otherwise re-initialized, the
default values are automatically in effect.
Group 1, the first group on the table, is a group of G codes for
motion. One of these is always in effect. That one is called the
current motion mode.
It is an error to put a G-code from group 1 and a G-code from
group 0 on the same line if both of them use axis words. If an axis
word-using G-code from group 1 is implicitly in effect on a line (by
having been activated on an earlier line), and a group 0 G-code
that uses axis words appears on the line, the activity of the group 1
G-code is suspended for that line. The axis word-using G-codes
from group 0 are G10, G28, G30, G52 and G92.
It is an error to include any unrelated words on a line with O- flow
control.

14. Comments
Comments can be added to lines of G code to help clear up the
intention of the programmer. Comments can be embedded in a
line using parentheses () or for the remainder of a line using a
semi-colon. The semi-colon is not treated as the start of a comment
when enclosed in parentheses.
Comments may appear between words, but not between words
and their corresponding parameter. So, S100(set speed)F200(feed) is
OK while S(speed)100F(feed) is not.

G0 (Rapid to start) X1 Y1
G0 X1 Y1 (Rapid to start; but don't forget the
coolant)
M2 ; End of program.

There are several active comments which look like comments but
cause some action, like (debug,..) or (print,..). If there are several
comments on a line, only the last comment will be interpreted
according to these rules. Hence, a normal comment following an
active comment will in effect disable the active comment. For
example, (foo) (debug,#1) will print the value of parameter #1,
however (debug,#1)(foo) will not.
A comment introduced by a semicolon is by definition the last
comment on that line, and will always be interpreted for active
comment syntax.

Note Inline comments on O words should not be used see
the O Code comments section for more information.

15. Messages
(MSG,) - displays message if MSG appears after the left
parenthesis and before any other printing characters. Variants
of MSG which include white space and lower case characters
are allowed. The rest of the characters before the right

http://linuxcnc.org/docs/html/gcode/o-code.html#ocode:comments

parenthesis are considered to be a message. Messages should
be displayed on the message display device of the user
interface if provided.

Message Example

(MSG, This is a message)

16. Probe Logging
(PROBEOPEN filename.txt) - will open filename.txt and store
the 9-number coordinate consisting of XYZABCUVW of each
successful straight probe in it.
(PROBECLOSE) - will close the open probelog file. For more
information on probing see the G38 Section.

17. Logging
(LOGOPEN,filename.txt) - opens the named log file. If the file
already exists, it is truncated.
(LOGAPPEND,filename) - opens the named log file. If the file
already exists, the data is appended.
(LOGCLOSE) - closes an open log file.
(LOG,) - everything past the , is written to the log file if it is
open. Supports expansion of parameters as described below.

Examples of logging are in nc_files/examples/smartprobe.ngc and in
nc_files/ngcgui_lib/rectange_probe.ngc sample G code files.

18. Debug Messages
(DEBUG,) - displays a message like (MSG,) with the addition of
special handling for comment parameters as described below.

19. Print Messages

http://linuxcnc.org/docs/html/gcode/g-code.html#gcode:g38

(PRINT,) - messages are output to stderr with special handling
for comment parameters as described below.

20. Comment Parameters
In the DEBUG, PRINT and LOG comments, the values of parameters
in the message are expanded.
For example: to print a named global variable to stderr (the default
console window).

Parameters Example

(print,endmill dia = #<_endmill_dia>)
(print,value of variable 123 is: #123)

Inside the above types of comments, sequences like #123 are
replaced by the value of the parameter 123. Sequences like #
<named parameter> are replaced by the value of the named
parameter. Named parameters will have white space removed
from them. So, #<named parameter> will be converted to #
<namedparameter>.

21. File Requirements
A G code file must contain one or more lines of G code and be
terminated with a Program End. Any G code past the program end
is not evaluated.
If a program end code is not used a pair of percent signs % with
the first percent sign on the first line of the file followed by one or
more lines of G code and a second percent sign. Any code past the
second percent sign is not evaluated.

Warning Using % to wrap a G code file will not do the
same thing as using a program end. The machine
will be in what ever state the program left it in
using %, the spindle and coolant may still be on

http://linuxcnc.org/docs/html/gcode/m-code.html#mcode:m2-m30

and things like G90/91 are left as the last program
set them. If you don’t use a proper preamble the
next program could start in a dangerous
condition.

Note The file must be created with a text editor like Gedit
and not a word processor like Open Office Word
Processor.

22. File Size
The interpreter and task are carefully written so that the only limit
on part program size is disk capacity. The TkLinuxCNC and Axis
interface both load the program text to display it to the user,
though, so RAM becomes a limiting factor. In Axis, because the
preview plot is drawn by default, the redraw time also becomes a
practical limit on program size. The preview can be turned off in
Axis to speed up loading large part programs. In Axis sections of
the preview can be turned off using preview control comments.

23. G Code Order of Execution
The order of execution of items on a line is defined not by the
position of each item on the line, but by the following list:

O-word commands (optionally followed by a comment but no
other words allowed on the same line)
Comment (including message)
Set feed rate mode (G93, G94).
Set feed rate (F).
Set spindle speed (S).
Select tool (T).
HAL pin I/O (M62-M68).
Change tool (M6) and Set Tool Number (M61).
Spindle on or off (M3, M4, M5).

http://linuxcnc.org/docs/html/gui/axis.html#axis:preview-control

Save State (M70, M73), Restore State (M72), Invalidate State
(M71).
Coolant on or off (M7, M8, M9).
Enable or disable overrides (M48, M49,M50,M51,M52,M53).
User-defined Commands (M100-M199).
Dwell (G4).
Set active plane (G17, G18, G19).
Set length units (G20, G21).
Cutter radius compensation on or off (G40, G41, G42)
Cutter length compensation on or off (G43, G49)
Coordinate system selection (G54, G55, G56, G57, G58, G59,
G59.1, G59.2, G59.3).
Set path control mode (G61, G61.1, G64)
Set distance mode (G90, G91).
Set retract mode (G98, G99).
Go to reference location (G28, G30) or change coordinate
system data (G10) or set axis offsets (G52, G92, G92.1, G92.2,
G94).
Perform motion (G0 to G3, G33, G38.n, G73, G76, G80 to G89), as
modified (possibly) by G53.
Stop (M0, M1, M2, M30, M60).

24. G Code Best Practices
Use an appropriate decimal precision
Use at least 3 digits after the decimal when milling in millimeters,
and at least 4 digits after the decimal when milling in inches.

Use consistent white space
G-code is most legible when at least one space appears before
words. While it is permitted to insert white space in the middle of
numbers, there is no reason to do so.

Use Center-format arcs

Center-format arcs (which use I- J- K- instead of R-) behave more
consistently than R-format arcs, particularly for included angles
near 180 or 360 degrees.

Use a Preamble set modal groups
When correct execution of your program depends on modal
settings, be sure to set them at the beginning of the part program.
Modes can carry over from previous programs and from the MDI
commands.

Example Preamble for a Mill

G17 G20 G40 G49 G54 G80 G90 G94

G17 use XY plane, G20 inch mode, G40 cancel diameter
compensation, G49 cancel length offset, G54 use coordinate system
1, G80 cancel canned cycles, G90 absolute distance mode, G94
feed/minute mode.
Perhaps the most critical modal setting is the distance units—If you
do not include G20 or G21, then different machines will mill the
program at different scales. Other settings, such as the return
mode in canned cycles may also be important.

Don’t put too many things on one line
Ignore everything in Section Order of Execution, and instead write
no line of code that is the slightest bit ambiguous.

Don’t set & use a parameter on the same line
Don’t use and set a parameter on the same line, even though the
semantics are well defined. Updating a variable to a new value,
such as #1=[#1+#2] is OK.

Don’t use line numbers
Line numbers offer no benefits. When line numbers are reported
in error messages, the numbers refer to the line number in the file,
not the N-word value.

25. Linear and Rotary Axis

Last updated 2022-09-29 20:28:27 MDT

Because the meaning of an F-word in feed-per-minute mode varies
depending on which axes are commanded to move, and because
the amount of material removed does not depend only on the feed
rate, it may be easier to use G93 inverse time feed mode to achieve
the desired material removal rate.

26. Common Error Messages
G code out of range - A G code greater than G99 was used, the
scope of G codes in LinuxCNC is 0 - 99. Not every number
between 0 and 99 is a valid G code.
Unknown g code used - A G code was used that is not part of the
LinuxCNC G code language.
i,j,k word with no Gx to use it - i, j and k words must be used on
the same line as the G code.
Cannot use axis values without a g code that uses them - Axis
values can not be used on a line without either a modal G code
in effect or a G code on the same line.
File ended with no percent sign or program end - Every G code
file must end in a M2 or M30 or be wrapped with the percent
sign %.

